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ABSTRACT 
 

In reliability based design optimization (RBDO) problems 
with correlated input variables, a joint cumulative distribution 
function (CDF) needs to be obtained to transform, using the 
Rosenblatt transformation, the correlated input variables into 
independent standard Gaussian variables for the inverse 
reliability analysis. However, a true joint CDF requires infinite 
number of test data to be obtained, so in this paper, a copula is 
used, which models a joint CDF only using marginal CDFs and 
limited data. Then, the inverse reliability analysis can be 
carried out using the joint CDF modeled by the copula and the 
first order reliability method (FORM), which has been 
commonly used in the inverse reliability analysis. However, 
because of the nonlinear Rosenblatt transformation, the FORM 
may yield inaccurate reliability analysis results. To resolve the 
problem, this paper proposes to use the most probable point 
(MPP)-based dimension reduction method (DRM) for more 
accurate inverse reliability analysis and RBDO. As an example 
of the proposed method, an RBDO study of an M1A1 Abrams 
tank roadarm is carried out. 
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1. INTRODUCTION 
 
In many RBDO problems of automotive engineering, input 

random variables, such as material fatigue properties, are 
correlated (Socie, 2003; Annis, 2004; Efstratios et al., 2004). 
For the RBDO problem with the correlated input variables, the 
joint CDF of the input variables should be available to 
transform the correlated input variables into the independent 
standard Gaussian variables, by using the Rosenblatt 
transformation (Rosenblatt, 1952) to carry out the inverse 
reliability analysis. However, in industrial applications, often 
only the marginal CDFs and limited paired sampled data are 
available using experimental testing, which makes it very 
difficult to obtain the input joint CDF. In this paper, a copula, 
which links the joint CDF and marginal CDFs, is used to model 
the joint CDF. Since the copula only requires marginal CDFs 
and correlation parameters, which are often available in 
industrial applications, to model the joint CDF, the joint CDF 

can be readily generated. Thus, it is valuable to use the copula 
for modeling the joint CDFs in practical applications with 
correlated input variables. 

 
Once the joint CDF is modeled using the copula, the 

Rosenblatt transformation can be utilized to transform the 
original random variables into the independent standard 
Gaussian variables for the inverse reliability analysis. For the 
inverse reliability analysis, the FORM has been widely used 
due to its simplicity of the probability of failure calculation. 
However, if the input variables have a non-Gaussian joint CDF 
modeled by a non-Gaussian copula, which often occurs in 
automotive engineering applications (Pham, 2006), the 
Rosenblatt transformation becomes nonlinear, which can 
significantly affect the nonlinearity of the transformed 
constraints. In this case, the FORM may not yield accurate 
inverse reliability analysis results since the FORM uses a linear 
approximation of the constraint to estimate the probability of 
failure. To obtain more accurate inverse reliability analysis and 
RBDO results, the MPP-based DRM (Lee et al., 2008) is 
introduced in this paper.  

 
An M1A1 Abrams tank roadarm problem (Lee et al., 2008) 

is used as an example of RBDO using the copula and MPP-
based DRM. The example shows that the weight of the 
roadarm is significantly reduced using the copula instead of 
assuming that inputs are independent, and, the weight is further 
reduced using the MPP-based DRM.  

 
 

2. RBDO FORMULATION 
 

The RBDO problem can be formulated to  
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where X is the vector of random variables; d is the vector of 
design variables;  represents the ith constraint functions; ( )iG X

i

Tar
FP  is the given target probability of failure for the ith 

constraint; and nc, ndv, and n are the number of probabilistic 
constraints, number of design variables, and number of random 
variables, respectively. The probability of failure in Eq. (1) is 
estimated by a multi-dimensional integral of the joint PDF of 
the input variables over the failure region as  
 

( )( )
( ) 0

0 ( ) , 1,
i

i G
P G f d i nc

>
> = =∫ XX

X x x ,

x

                    (2) 

 
where x is the realization of the random vector X and is 
the joint probability density function (PDF) of X. However, 
since it is very difficult to compute the multi-dimensional 
integral, approximation methods such as the FORM or the 
second order reliability method (SORM) are used. The FORM 
often provides adequate accuracy and is much easier to use 
than the SORM, and hence it has been commonly used in 
RBDO.  

( )fX x

 
Using a performance measure approach (PMA+) (Youn et 

al., 2005), the ith constraint in Eq. (1) can be rewritten as  
 

Tar *[ ( ) 0] 0 ( ) 0
ii F iP G P G> − ≤ ⇒ ≤X                              (3)  

 
where  is the ith constraint function evaluated at the 
most probable point (MPP), , in X-space, which can be 
obtained by solving the following optimization problem: 

*( )iG x
*x

 

 
max. ( )
s. t.

i

i

t

g
β=

u
u

                    (4)  

 
where  is the ith  constraint function that is transformed 
from the original space (X-space) into the standard Gaussian 
space (U-space), i.e., and 

( )ig u

( ) ( ( )) ( )i i ig G G≡ =u x u x
it

β  is the 

target reliability index such that ( )Tar
i iF tP β= Φ −  using the 

FORM. If the constraint function at the MPP is less than or 
equal to zero, then the ith constraint in Eq. (1) is satisfied for the 
given target reliability. Thus, Eq. (1) can be rewritten using 
PMA+ as 
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3. MODELING OF JOINT CDF USING COPULA 
 

As mentioned earlier, if the input variables are correlated, it 
is often too difficult to obtain the true joint CDF in practical 
industrial applications with only limited experimental data. In 
this paper, a copula is used to model the joint CDF using 

marginal CDFs and correlation measures that are calculated 
from the experimental data. The definition of copula and the 
correlation measures associated with copulas are explained in 
this section. 
 
3.1 Definition of Copula 
 

Copula is originated from a Latin word for “link” or “tie” 
that connects two different things. In statistics, the definition of 
copula is stated by Nelson (Nelson, 1999): “Copulas are 
functions that join or couple multivariate distribution functions 
to their one-dimensional marginal distribution functions. 
Alternatively, copulas are multivariate distribution functions 
whose one-dimensional margins are uniform on the interval [0, 
1].”  

 
 According to Sklar’s theorem (Nelson, 1999), if the 
random variables have a joint CDF ( )

1 1,...,
nX X nF x x

( ) ,X n

 with 

marginal distributions, ( )
1 1 ,...,

nXF x F x then there exists 
an n-dimensional copula C such that 
 

( ) ( ) ( )( )1 1,..., 1 1,..., ,...,
n nX X n X X nF x x C F x F x= θ                (6)  

where θ  is the matrix of the correlation parameters of 1,..., nx x . 
If marginal distributions are all continuous, then the copula C is 
unique. Conversely, if C is an n-dimensional copula and 

( ) ( )
1

..,
nX1 ,.X nF x F x are the marginal distributions, then 

( )
1 1,...,X X nn

F x x  is the joint CDF (Nelson, 1999). By taking 

the derivative of Eq. (6), the joint PDF ( ), , n1 , , 1nX Xf x x  is 
obtained as 
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 with ( ) ,
ii X iu F x= and 

( )
iX if x  is the marginal PDF for . A copula only 

requires marginal CDFs and correlation parameters to model a 
joint CDF, so the joint CDF can be readily obtained from 
limited data. In addition, since the copula decouples marginal 
CDFs from the joint CDF, the joint CDF modeled by the 
copula can be expressed in terms of any type of marginal CDF. 
That is, having marginal Gaussian CDFs does not mean that the 
joint CDF is Gaussian. Thus, it is desirable to be able to model 
the joint CDF of correlated input variables with mixed types of 
marginal CDFs, which can often occur in industrial 
applications. To model the joint CDF using the copula, the 
correlation parameters need to be obtained from experimental 
data as seen in Eqs. (6) and (7). Since various types of copulas 
have their own correlation parameters, it is desirable to have a 
common correlation measure to obtain the correlation 
parameters from the experimental data. 

1, ,i = n
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3.2 Correlation Measures 
 

To measure the correlation between two random variables, 
Pearson’s rho and Kendall’s tau can be used. Pearson’s rho was 
first discovered by Bravais (Bravais, 1846), and was developed 
by Pearson (Pearson, 1896). Pearson’s rho indicates the degree 
of linear relationship between two random variables as  

 
( ),

XY
X Y

Cov X Y
ρ

σ σ
=                                     (8)  

 
where Xσ and Yσ  are standard deviations of X and Y, 
respectively, and Cov(X,Y) is the covariance between X and Y. 
Since Pearson’s rho only indicates the linear relationship 
between two random variables, it is valid only when the joint 
CDF is Gaussian. Pearson’s rho also can be used as correlation 
measure in the joint CDF modeled by Gaussian copula, because 
the Gaussian copula is originated from a joint Gaussian CDF. If 
the marginal CDFs are Gaussian, then the joint CDF modeled 
by the Gaussian copula is the joint Gaussian CDF. The 
Gaussian copula allows generating a joint Gaussian CDF with 
non- marginal Gaussian CDFs as 
 

( ) ( ) ( )( )1 1
1 1, , , , , n

n nC u u u u I− −
Φ = Φ Φ Φ ∈P'P' P' u   (9)  

 
where 

 
is the marginal CDF of  for ( )

ii X iu F x= iX 1, ,i n= , 
 is the covariance matrix consisting of correlation 

coefficients, Pearson’s rho, between correlated input variables. 

 represents the marginal standard Gaussian CDF and 

 is the joint Gaussian CDF defined as  
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ΦP'
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/ 2

1 1exp
22 nπ
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-1
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]
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for [ T

1, , nx x=x with a mean vector  
However, Pearson’s rho cannot be a good measure for a 
nonlinear relationship between two random variables, which 
often occurs in practical engineering applications. If the given 
data follows a joint non-Gaussian CDF modeled by a non-
Gaussian copula, another correlation measure is necessary.  

[ ]T1, , .nμ μ=μ

 
 Unlike Pearson’s rho, Kendall’s tau does not require the 
assumption that the relationship between two random variables 
is linear. Since the Kendall’s tau measures the correspondence 
of rankings between correlated random variable, it is called a 
rank correlation coefficient. The Kendall’s tau was first 
introduced by Kendall (Kendall, 1938) and is defined as  
 

 ( ) ( )2
4 , ,

I
C u v dC u vτ θ= −∫ ∫ 1              (11)  

 
where [ ]( )0,1nI I I I= × =  and Eq. (11) is the population 
version of Kendall’s tau. The sample version of Kendall’s tau 
is  

 

 ( ) /
2
nsc dt c d

c d
⎛ ⎞−

= = − ⎜ ⎟+ ⎝ ⎠
                       (12)  

 
where c represents the number of concordant pairs, d is the 
number of discordant pairs, and ns  is the number of samples. 
Using the estimated Kendall’s tau, the correlation parameter of 
the copula, θ , can be calculated because Kendall’s tau can be 
expressed as a function of the correlation parameter as shown 
in Eq. (11). The explicit functions of Eq. (12) for some copulas 
are presented in reference (Huad et al., 2006) . 
 
 Consider a non-Gaussian copula, which uses a rank 
correlation coefficient such as Kendall’s tau as the correlation 
measures. Unlike the Gaussian copula, the Archimedean copula 
is constructed in a completely different way. An important 
component of constructing Archimedean copula is a generator 
function θϕ  with a correlation parameter θ. If θϕ  is a 
continuous and strictly decreasing function from [0 to [0,1] , )∞

such that ( )0θϕ = ∞  and ( )1 0θϕ =  and the inverse 1
θϕ
−  is 

completely monotonic on [0 , then the Archimedean copula 
can be defined as (Nelson, 1999)  

, )∞

 
( ) ( ) ( )1

1 1, , n nC u u u uθ θ θθ ϕ ϕ ϕ−= + +⎡ ⎤⎣ ⎦                  (13)  
 

for . Each Archimedean copula has a corresponding 
unique generator function 

2n ≥
θϕ , which provides a multivariate 

copula as shown in Eq. (13). Once the generator function is 
provided, the Kendall’s tau can be obtained as 
 

 
( )
( )

1

0
1 4

t
dt

t
θ

θ

ϕ
τ

ϕ
= +

′∫                         (14)  

 
Using Eq. (14), the correlation parameter θ  can be expressed 
in terms of Kendall’s tau. More detailed information on 
Kendall’s tau is presented in reference (Kendall, 1938). 
 

 
Table 1. Copula Functions and Their Parameter Domain 

Copula ( ),C u v θ  θ ∈Ω  

Clayton ( ) 1/
1u v

θθ θ −− −+ −  ( )0,∞  

AMH ( )( )/ 1 1 1uv u vθ− − −⎡ ⎤⎣ ⎦  [ )1,1−  

Gumbel ( ) ( ){ }1/
exp ln lnu v

θθ θ⎡ ⎤− − + −⎣ ⎦  [ )1,∞  

Frank ( )( ) ( )1 ln 1 1 1 / 1u ve e eθ θ θ

θ
− − −⎡ ⎤− + − − −⎣ ⎦ ( ),−∞ ∞

A12 ( ) ( )
11/

1 11 1 1u v
θθ θ

−
− −⎧ ⎫⎡ ⎤+ − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 [ )1,∞  

A14 ( ) ( )
1/

1/ 1/1 1 1u v
θθθ θθ θ

−
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− −Φ Φ

−∞ −∞
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⎜ ⎟−⎝ ⎠

−
∫ ∫  
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The Archimedean copula can be used for a multivariate 
CDF. But it is hard to expand to an n-dimensional copula 
because, as shown in Eq. (14), it has one generator function, 
and thus has the same correlation parameter even if n variables 
are correlated with different correlation coefficients. Hence, 
most copula applications consider bivariate data only, so does 
this paper.  
 

Including the Gaussian copula and Archimedean copula, 
there exist various kinds of copulas as listed in Table 1. Thus, 
selecting an appropriate copula is necessary to correctly model 
a joint CDF based on the given experimental data. The 
identification of the true copula is addressed in detail in 
references (Huad et al., 2006; Noh et al., 2008). 

 
 

4. MPP-BASED DIMENSION REDUCTION METHOD 
 
The MPP-based reliability analysis such as the FORM 

(Hasofer and Lind, 1974; Tu and Choi, 1999) and the SORM 
(Breitung, 1984; Hohenbichler and Rackwitz, 1988) has been 
commonly used for reliability or inverse reliability assessment. 
However, when the constraint function is nonlinear or multi-
dimensional, the reliability analysis using the FORM could be 
significantly erroneous because the FORM cannot handle the 
complexity of nonlinear or multi-dimensional functions. 
Inverse reliability analysis using the SORM may be accurate, 
but the second-order derivatives required for the SORM are 
very difficult and expensive to obtain in industrial applications. 
On the other hand, the MPP-based DRM achieves both the 
efficiency of the FORM and the accuracy of the SORM (Lee et 
al., 2008). 

  
The DRM was developed to accurately and efficiently 

approximate a multi-dimensional integral (Rahman and Xu, 
2004). There are several DRMs depending on the level of 
dimension reduction: univariate dimension reduction, bivariate 
dimension reduction, and multivariate dimension reduction. In 
this paper, the univariate DRM is used for calculating 
probability of failure due to its simplicity and efficiency. The 
univariate DRM is carried out by decomposing an n-
dimensional constraint function G(X) into the sum of one-
dimensional functions at the MPP as (Rahman and Wei, 2006)  

 

* * * *
1 1 1

1

ˆ( ) ( )

( , , , , , , ) ( 1) ( )
n

i i i n
i

G G

G x x X x x n G− +
=

≅

≡ ∑

X X

x*− −
  (15)  

 
where * * * T

1 2={ ,  , ,  }nx x x*x  is the FORM-based MPP obtained 
from Eq. (4) and n is the number of random variables. In the 
inverse reliability analysis, since the probability of failure 

cannot be directly calculated in U-space, a constraint shift in a 
rotated standard Gaussian space (V-space) needs to be defined 
as 
 

*( ) ( ) ( )sG G G≡ −v v v

* T{0, ,0, }

                          (16)  
 

where β=v  is the MPP in V-space and 

. Then, using the shifted constraint function, 
the probability of failure using the MPP-based DRM is 
calculated as (Lee et al., 2008) 

( ) ( ( ))G G≡v x v
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1 1
2

( )( ) ( )
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sn
i i

i i
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=
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( )i iG v

             (17)  

 
where (0, ,0, ,0, , )s s

iG v β≡  is a function of vi only 

and 1
( )gb ∂

=
∂

*u
u

.  

 
Equation (17) can be further approximated as using the 

moment-based integration rule (Xu and Rahman, 2003)  
 

( )

1

11 1DRM
2

( )s jn N
i i

j
ji

F n

G vw
b

P
β

β

−

==

−

⎛ ⎞
Φ − +⎜ ⎟
⎝=

Φ −

∑∏
⎠                    (18)  

 
jwhere iv  represents the jth quadrature point for vi, wj denote 

weights, and N is the number of quadrature points. The 
quadrature points and weights for the standard Gaussian 
random variables vi are shown in Table 2. 
 

Table 2. Gaussian Quadrature Points and Weights  
N Quadrature Points Weights 
1 0.0 1.0 

3 3±

2.856970

 0.166667 
0.0 0.666667 

5 
±  0.011257 

1.355626±  0.222076 
0.0 0.533333 

 
Using  calculated from Eq. (18), the corresponding 

reliability index  can be defined as 

DRM
FP

)

DRMβ

DRMβ

r )F

 
 ,                              (19)  1 DRM( FP−= −Φ

 
which is not the same as the target reliability index 

because the nonlinearity of the constraint 
function is reflected in the calculation of .  Hence, using 

1 Ta(t Pβ −= −Φ

DRM

DRM
FP

β , a new updated reliability index upβ  can be defined as 
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)  (20)  up cur cur DRM( tβ β β β β β≡ + Δ = + −
 

where curβ  is the current reliability index. The recursive form 
of the Eq. (20) is 
 

              (21)  ( 1) ( ) ( )
DRM(k k k

tβ β β β β β+ ≡ + Δ = + − )
 

where (0)
tβ β=  at the initial step.  

 
Using this updated reliability index, the updated MPP can 

be found by either using an iterative MPP search or using an 
approximation. If an iterative MPP search with the updated 
reliability index is used, the procedure will be computationally 
expensive. Accordingly, to improve the efficiency of the 
optimization, the updated MPP can be approximated as (Ba-
abbad et al., 2006) 

 

 
(k+1) (k+1)

* *
k k( ) ( ) or k

β β
β β

≅ ≅a a
k +1 k +1u u v k v

DRM

   (22)  

 
assuming that the updated MPP  is located along the same 
radial direction vN as the current MPP  in V-space, as shown 
in Fig. 1. The updated MPP obtained from Eq. (22) is called the 
DRM-based MPP and denoted as  in X-space. This 
DRM-based MPP is used to check whether or not the optimum 
design satisfies the constraint. The location of the DRM-based 
MPP for a concave and convex function is shown in Figs. 1(a) 
and 1(b), respectively. 

a
k+1v

*
kv

*x

 

 
(a) Concave Function 

 

 
        (b) Convex Function 

Figure 1. DRM-based MPP for Concave and Convex Functions  

 
Similar to the FORM, using the DRM-based inverse 

reliability analysis, the RBDO formulation in Eq. (5) can be 
rewritten as  

 

*
DRM

minimize      Cost( )
subject to     ( ) 0, 1, ,

, R and R
i

L U ndv n

G i nc≤ =

≤ ≤ ∈ ∈

d
x

d d d d X

 (23)  

 
 

5. M1A1 TANK ROADARM EXAMPLE 
 
The roadarm of M1A1 tank is used to demonstrate 

applicability of the copula and DRM-based RBDO. The 
roadarm is modeled using 1572 eight-node isoparametric finite 
elements (SOLID45) and four beam elements (BEAM44) of a 
commercial finite element code, as shown in Fig. 2, and is 
made of S4340 steel with Young’s modulus E=3.0×107 psi and 
Poisson’s ratio ν=0.3. The durability analysis of the roadarm is 
carried out using Durability and Reliability Analysis 
Workspace (DRAW) (CCAD, 1999a-b), to obtain the fatigue 
life contour as shown in Fig. 3. The fatigue lives at the critical 
nodes shown in Fig. 3 are chosen as the design constraints of 
RBDO. 

 
 

 
Figure 2. Finite Element Model of Roadarm 

 
 
 

 
Figure 3. Fatigue Life Contour and Critical Nodes of Roadarm 
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The shape design variables are shown in Fig. 4. Eight 

shape design variables characterize four cross sectional shapes 
of the roadarm. Widths (x1-direction) of the cross-sectional 
shapes are defined by the design variables d1, d3, d5, and d7 at 
the intersections 1 to 4, respectively, and heights (x3-direction) 
of the cross sectional shapes are defined using the remaining 
four design variables. Eight shape design random variables are 
listed in Table 3 and assumed to be independent.  

 
 

 
Figure 4. Shape Design Variables for Roadarm 

 
 

Table 3. Properties of Input Geometry Random Variable 

 Ld  0d  Ud  COV Distr. 
Type 

d1 1.3500 1.7500 2.1500 

5% 

Normal 
d2 2.6496 3.2496 3.7496 Normal 
d3 1.3500 1.7500 2.1500 Normal 
d4 2.5703 3.1703 3.6703 Normal 
d5 1.3563 1.7563 2.1563 Normal 
d6 2.4377 3.0377 3.5377 Normal 
d7 1.3517 1.7517 2.1517 Normal 
d8 2.5085 2.9085 3.4085 Normal 

 
 
For the input fatigue material properties, since statistical 

information of S4340 steel except its nominal value is not 
available, statistical information from 950X steel (Socie, 2003) 
is used to describe the properties of S4340 steel. Strain-Life 
relationship is usually given by the classical Coffin-Manson 
equation as (Meggiolaro and Castro, 2004) 

 

1/

(2 ) (2 )
2 2 2

2 2

p f b ce
f f f

n

N N
E

E K

ε σεε ε

σ σ ′

′ΔΔΔ ′= + = +

Δ Δ⎛ ⎞= + ⎜ ⎟′⎝ ⎠

             (24)  

 

where fσ ′ , b are the fatigue strength coefficient and exponent, 

fε ′  and c are the fatigue ductility coefficient and exponent, Nf  
is the fatigue initiation life, E is the Young’s modulus, and K ′  
and n′  are the cyclic strength coefficient and exponent.  

From Socie’s study on 950X steel, it is shown that fσ ′  and 
b have highly negative correlation with ρ=−0.828, and fε ′  and 
c have also highly negative correlation with ρ=−0.976. Using 
Bayesian method (Noh et al., 2008), Gaussian copula is 
identified for fσ ′  and b, and Frank copula is identified for fε ′  
and c as shown in Figs. 5(a) and 5(b). The fatigue material 
properties are listed in Table 4. In Table 4, COV is also 
obtained from Socie’s study on 950X steel since COV for 
S4340 steel is not available in the literature. K ′  and n′  in 
Table 4 are assumed to be independent. 

  
  

Table 4. Properties of Input Fatigue Random Parameters 
Non-design  

Uncertainties Mean COV Distribution 
Type 

K ′ 197000 25% Lognormal 
n′  0.1200 25% Lognormal 

fσ ′  177000 25% Lognormal 
b  -0.0730 25% Normal 

fε ′  0.4100 50% Lognormal 
c -0.6000 25% Normal 

 
 

 
(a) Gaussian Copula 
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(b) Frank Copula 

Figure 5. Copulas for Fatigue Material Properties 
 

The RBDO problem for the roadarm is formulated to  
 

Tar

L U

minimize     Cost( )
subject to    ( ( ) 0) , 1, ,

                    
ii FP G P i nc> ≤ =

≤ ≤

d
d

d d d

                (25) 

 
where  
 

Tar

Cost( ) : Weight of Roadarm
( )( ) 1 , 1, ,

( ) : Crack Initiation Fatigue Life,
: Crack Initiation Target Fatigue Life (=5 years)

2.275%
i

i
t

t

F

LG i nc
L

L
L

P

= − =

=

d
dd

d         (26) 

 
and number of constraints nc = 13 as shown in Fig. 3 
 

First, we assume that the input random variables are 
independent and run the RBDO. Second, we use correlation of 
input fatigue material properties to test the applicability of the 
copula but run the FORM-based RBDO. Finally, the DRM-
based RBDO with correlated input variables is carried out to 
obtain more accurate optimum.  

 
The RBDO test results for each case are shown in Table 5. 

Interestingly, the FORM-based RBDO assuming that input 
variables are independent is failed because the feasible region 
in U-space is small, and thus, there is no feasible solution 
within the design bounds. However, the FORM-based RBDO 
with two correlated pairs converges to the optimum in Table 5 
and shows significant reduction in the weight of the roadarm 
compared to the independent case. This is because the high 
correlations make feasible region much larger than the 
independent case. 

 
 

Table 5. RBDO Comparison 

 Initial D.O.* FORM DRM Indep. Correlated
d1 1.750 1.588 2.117 1.958 1.928 
d2 3.250 2.650 3.427 2.650 2.650 
d3 1.750 1.922 2.044 2.031 2.067 
d4 3.170 2.570 3.670 2.670 2.577 
d5 1.756 1.477 1.939 1.775 1.776 
d6 3.038 3.292 3.538 3.538 3.535 
d7 1.752 1.630 2.152 2.152 2.075 
d8 2.908 2.508 3.408 2.536 2.512 

Cost 515.09 464.56 617.38 519.70 514.02
Active 
Const. Infeasible 1,3,5, 

8,12 Failed 1,3,5, 
9,13 1,5,9 

*  D.O. means deterministic optimum. 
 
At the optimum of the FORM-based RBDO with 

correlated input variables, reliability analysis using the MPP-
based DRM is carried out to check whether or not the 
constraint functions are linear. Table 6 shows the reliability 
analysis results for active constraints. As shown in Table 6, the 
probabilities of failure for active constraints 1, 3, 9 are less than 
the target probability of failure (2.275%), which means that the 
optimum design obtained from the FORM-based RBDO is still 
conservative. Hence, using the DRM-based RBDO, the weight 
of the roadarm can be further reduced while satisfying the 
target probability of failure. From Table 5, it can be seen that 
the weight of roadarm is further decreased from 519.70 to 
514.02 by use of the DRM-based RBDO. 

 
Table 6. Reliability Analysis Results Using DRM 

 G1 G 3 G 5 G 9 G 13 
PF, % 1.588 1.722 2.313 1.679 2.240 

 
 

CONCLUSIONS 
  
In this paper, copulas are proposed to model the joint 

CDFs using marginal CDFs and samples without requiring 
effort to directly capture the joint CDFs. Due to the nonlinear 
Rosenblatt transformation caused by non-Gaussian copula, 
constraint functions can be highly nonlinear in U-space. For 
more accurate inverse reliability analysis method than FORM, 
the MPP-based DRM is also proposed to handle the 
nonlinearity or multi-dimensionality of the problem. The 
roadarm of an M1A1 tank is used to demonstrate the 
applicability of the copula and MPP-based DRM for RBDO. 
The numerical test using the roadarm shows that using the 
copula to improve fidelity of the input joint CDF, the weight of 
the roadarm is significantly reduced compared to the RBDO 
with independent variables. However, due to the inaccuracy of 
FORM for the calculation of the probability of failure, the 
optimum is still conservative than the FORM result in Table 5. 
By using the DRM-based RBDO, the weight of the roadarm 
can be further reduced while satisfying the target probability of 
failure. In conclusion, the RBDO can be significantly improved 
by using copulas to obtain a better estimation of the joint CDFs 
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and MPP-based DRM to obtain a better calculation of the 
probability of failure. 
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